超声波的高音是声音振动产生的噪声。由于35千赫或40千赫设备的高频振幅约为20千赫设备的一半,传输到该设备的能量相应减少,并发出噪声。此外,在焊接过程中,零件的运动较为平缓,减少了循环应力,导致焊缝周围的热量升温,损坏其他电子元件。
然而,随着能量的减少,超声波能量通过组件传输的能力也受到限制。在大约6.35毫米(0.25英寸)内。
降低强度,提高机械振动传输的控制能力,提高了工艺控制和焊接质量。减少元件应力,减少探测器结构和更好的组装,降低能耗。对于熔化性能较好的材料,如、聚和玻璃纤维填充的热塑性塑料,改进的能量控制将缩短焊接周期。对于铆钉和点焊,使用高频设备更有效。
为了尽可能保证焊机良好的焊接稳定性,从生产管理的角度出发,应尽可能减少焊机的切换次数。更重要的是,从超声波焊接机的设计和生产角度来看,应该采取一定的措施。例如,换能器、等关键部件的材料选择是否能适应更宽的光谱传输范围,某些部件的形状和尺寸是否符合声波传输原理,是否能更好地适应不同波长的传输。高频电磁波与机械振动,以及换能器与系统的匹配是否良好等,也会对焊机的焊接稳定性产生比较大的影响。
在超声波焊接中,纵波以高频形式传播,产生低振幅的机械振动。焊接机的电能转化为往复运动的机械能。为了了解振幅、频率和波长之间的关系,以及它们与发热的关系,我们需要了解超声波焊接机的主要部件。
超声波焊接机的主要部件有功率发生器、换能器、调幅器(有时称为喇叭)和焊接头。电源发生器将电压为120V/240V的50-60Hz电源转换为电压为1300V、运行频率为20-40Khz的电源。这种能量被提供给换能器,换能器利用圆盘状的压电陶瓷将电能转化为机械振动,即当高频电流通过压电陶瓷时,压电陶瓷会产生应变位移。